An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction

نویسندگان

  • Xiujuan Zheng
  • Huajing Fang
چکیده

The gradual decreasing capacity of lithium-ion batteries can serve as a health indicator for tracking the degradation of lithium-ion batteries. It is important to predict the capacity of a lithium-ion battery for future cycles to assess its health condition and remaining useful life (RUL). In this paper, a novel method is developed using unscented Kalman filter (UKF) with relevance vector regression (RVR) and applied to RUL and short-term capacity prediction of batteries. A RVR model is employed as a nonlinear time-series prediction model to predict the UKF future residuals which otherwise remain zero during the prediction period. Taking the prediction step into account, the predictive value through the RVR method and the latest real residual value constitute the future evolution of the residuals with a time-varying weighting scheme. Next, the future residuals are utilized by UKF to recursively estimate the battery parameters for predicting RUL and short-term capacity. Finally, the performance of the proposed method is validated and compared to other predictors with the experimental data. According to the experimental and analysis results, the proposed approach has high reliability and prediction accuracy, which can be applied to battery monitoring and prognostics, as well as generalized to other prognostic applications. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remaining useful life prediction of lithium-ion battery with unscented particle filter technique

Accurate prediction of the remaining useful life of a faulty component is important to the prognosis and health management of a system. It gives operators information about when the component should be replaced. In recent years, a lot of research has been conducted on battery reliability and prognosis, especially the remaining useful life prediction of the lithium-ion batteries. Particle filter...

متن کامل

Comparison of Prognostic Algorithms for Estimating Remaining Useful Life of Batteries

The estimation of remaining useful life (RUL) of a faulty component is at the center of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors like modeling inconsistencies, system noise and degraded sensor fidelity, which leads...

متن کامل

A Fusion Framework with Nonlinear Degradation Improvement for Remaining Useful Life Estimation of Lithium-ion Batteries

Fusion prognostic framework for lithium-ion battery remaining useful life (RUL) estimation has become a hot spot. Especially, the cycle life prediction has been conducted widely, for which many prognostic methods have been proposed correspondingly. However, many fusion frameworks which can achieve high precision are accompanied with high computing complexity and high time consumption which make...

متن کامل

Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed....

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rel. Eng. & Sys. Safety

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2015